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We derive averaged equations for large Reynolds number laminar flows of gas-liquid 
dispersions accounting for slowly varying spatial and temporal fields. In particular, 
we obtain an exact expression for the dispersed-phase stress tensor to be used in the 
force balance equation for gas bubbles and illustrate its application by evaluating the 
stress tensor for a few special cases. It is shown that the dispersed-phase stress tensor 
gradient with respect to the mean relative motion or the void fraction for the 
uniformly random bubbly liquids under conditions of large Reynolds number 
laminar flows is negative and thus has a destabilizing influence on the dynamics of 
void fraction waves in bubbly liquids. 

1. Introduction 
We consider the problem of deriving averaged equations for flows of liquids 

containing spherical gas bubbles when the Reynolds number based on the radius and 
the characteristic velocity of the bubbles is large compared to unity. This problem 
has been examined previously by a number of investigators (see, for example, Ishii 
1975; Nigmatulin 1979; Prosperetti & Jones 1984; Biesheuvel t van Wijngaarden 
1984; Geurst 1986; and van Wijngaarden & Kapteyn 1990). Biesheuvel & van 
Wijngaarden (1984) used a combination of volume and ensemble averaging 
techniques to derive the averaged equations for the mixture. This results in averaged 
quantities such as the Reynolds stress and the overall stress in the medium which 
depend on the magnitude of the relative motion between the two phases. To calculate 
this quantity, Biesheuvel & van Wijngaarden proposed that an additional relation 
derived from the force balance on the dispersed phase must be used. By examining 
the nature of forces that act on a single bubble under unsteady flow conditions, they 
proposed such a relation, and this, together with the averaged equations for the 
overall medium, then forms the complete set of equations for analysing various 
macroscopic flows. Since this relation for the force balance on a single bubble was 
derived from a volume averaging procedure, it has the right form as far as the various 
unsteady terms are concerned. However, as pointed out by these investigators, it  
lacks the terms that are important when there are spatial variations in the velocity 
and volume fractions of the individual phases. 

Equations of motion taking account of spatial variations in volume fraction and 
velocity have been developed in the theory of rapid granular flows (Jenkins & 
Richman 1985) and gas-solid suspensions under conditions of small Reynolds and 
large Stokes numbers (Koch 1990). These theories contain particle or dispersed-phase 
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stress terms which describe the transport of momentum by the random translation 
of the solid particles and by solid-body collisions. Batchelor (1988) noted that, in 
addition, there should be a stress contribution from fluid dynamic interparticle forces 
in a fluidized bed. However, he did not specify the means of calculating this stress 
from a detailed study of the particle interactions. 

For gas-liquid dispersions, van Wijngaarden & Kapteyn (1990) arrived at  a term 
in the force balance on a test bubble which can be interpreted as the divergence of 
the dispersed-phase stress tensor. These investigators analysed explicitly the case of 
dilute dispersion only, and the stress tensor they derived is related to the average of 
the fluctuations in the impulse multiplied by the fluctuations in the velocity of the 
bubbles. The impulse associated with a bubble is defined through (26) and it plays 
a role similar to the momentum of a particle in gas-solid suspensions. Thus, the stress 
tensor that these investigators have derived accounts for the translational stress but 
not the fluid dynamic interactions and collisions, if any. Biesheuvel & Gorissen (1990) 
used an approach similar to that used in the statistical mechanics theory of pressure 
in dense gases or liquids (Rice & Gray 1965) to obtain a formal expression for the 
stress tensor for bubbly liquids. Their expression accounts for both the translational 
and the fluid dynamic interparticle interactions. They assumed that the interparticle 
interactions can be expressed as a sum of pair interactions but did not show how the 
interactions among many bubbles can be decomposed into pair interactions. They 
also did not carry out any specific calculations for estimating the contribution due 
to these fluid dynamic interactions. 

With the development of efficient numerical methods for solving rigorously the 
problem of multiparticle interactions, it has become possible to carry out detailed 
dynamic simulations of the motion of many bubbles under conditions of large 
Reynolds number laminar flow, as can be seen, for example, in a companion study, 
Sangani & Didwania (1993, to be referred to herein as I). With the help of these 
simulations, it is possible to compute various dynamic quantities, and thus it is 
important to establish the precise definitions of various average quantities that must 
be evaluated via such simulations. While both Batchelor’s and van Wijngaarden & 
Kapteyn’s studies give a good physical picture of the origin of the term associated 
with the interparticle stress, they do not give the recipes for determining them from 
the detailed knowledge of the motion of particle or bubbles. The aim of the present 
investigation therefore is to derive the averaged equations in a systematic manner 
and to give formulae for determining various averaged quantities from the details of 
the bubble motion in non-dilute dispersions, i.e. dispersions in which the volume 
fraction p of the dispersed phase is not small. The main emphasis is on determining 
the correct expression for the interparticle or the dispersed-phase stress tensor. This 
quantity is believed to play an important role in stabilizing small-amplitude 
disturbances of p in bubbly liquids and fluidized beds (see, for example, van 
Wijngaarden & Kapteyn 1990 ; Biesheuvel & Gorissen 1990 ; Batchelor 1988). 

To illustrate the application of this expression for the stress tensor, we consider 
three special cases. In  the first case, the centres of the bubbles coincide with the 
lattice of a periodic array. For this situation, it is possible to derive an analytical 
expression that is valid when p is small. In order that the waves in p in the direction 
of the mean relative flow are stabilized by the dispersed-phase stress tensor, the 
gradient of this quantity in the direction of the mean flow must be positive. This 
condition is satisfied when the bubbles are arranged on a simple cubic lattice but not 
when the bubbles are arranged on the body-centred cubic lattice. Thus the latter 
arrangement of bubbles is destabilized by the dispersed phase. The dispersed-phase 
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stress plays a stabilizing role in the case of a simple cubic arrangement provided that 
the disturbance in /3 is produced by changing only the spacing between the bubbles 
in the direction of gravity. We should emphasize here that the actual criterion for the 
stability of bubbly liquids will also depend on the relative magnitude of the other 
terms in the averaged equations. Our goal in the present study is not to carry out the 
complete stability analysis. Rather, we are only interested in determining under 
what circumstances the dispersed-phase stress will play a stabilizing (or destabilizing) 
role. 

The second case we consider is that of a random arrangement of bubbles rising 
under the influence of buoyancy forces. The velocity of all bubbles is taken to  be the 
same a t  time t = 0. We find that the gradient of the stress is negative in this case also, 
indicating its destabilizing influence. Indeed, as shown in I via dynamic simulations, 
the uniform random state of a bubbly liquid is unstable under these conditions. The 
magnitude of the fluid dynamic interparticle interaction term is greater than the 
combined contribution of the translational and collisional components of the stress. 
van Wijngaarden & Kapteyn ( 1990) determined the dispersed-phase stress for dilute 
bubbly liquids by accounting only for the kinetic contribution, and, therefore, the 
stress they calculated played the stabilizing role. Thus, what we find is that 
accounting for fluid dynamic interactions actually reverses the role played by the 
dispersed-phase stress in the stability of void fraction waves. We should add here 
that Biesheuvel & Gorissen (1990) had actually suggested that the potential 
contribution to the stress is likely to be negative even though they did not actually 
account for it in their numerical analysis of the stability of the void fraction waves. 

The third case we consider is that of an initially random arrangement of bubbles 
with large fluctuations in their velocities. We take the magnitudes of the relative 
motion, gravity, and viscosity all to be vanishingly small. This situation may be 
applicable to flows of bubbly liquids under turbulent flow conditions or to laminar 
flow of bubbly liquids undergoing shear, as in the case of flows inside pipes. The latter 
may be thought of as an analogous situation to rapid granular flow of slightly 
inelastic particles for which it  is known that the leading-order velocity distribution 
is isotropic Maxwellian with the mean shear causing a small perturbation, In this 
case, the dispersed-phase stress is a function of the Reynolds stress and p, and we 
determine this dependence by carrying out dynamic simulations. The magnitude of 
the translational and collisional contributions is much larger than that of the fluid 
dynamic interaction and, as a consequence, the dispersed-phase stress has a positive 
gradient. Thus, we see that if there is a mechanism for inducing large variance in the 
velocity, e.g. by turbulence or shear, the state of uniform bubbly liquids can be made 
stable. 

In addition to the continuity and the force balance condition, the theory of rapid 
granular flows also includes an energy equation for the dispersed phase. For complete 
analysis of the flows of bubbly liquids at large Reynolds number, we also require such 
an energy equation for the dispersed phase. Analogous to the dispersed-phase stress 
term in the momentum balance, this equation contains an energy flux term. We have 
been unable to derive an exact expression for this term, and therefore, an 
approximate expression is given for it. The accuracy of this expression is tested with 
the results obtained from numerical simulations. The results for this quantity for the 
special cases described above are also presented. 
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2. Ensemble-averaged equations for the overall medium 
We consider an infinite medium consisting of gas bubbles dispersed in a liquid. The 

Reynolds number of the flow based on the characteristic velocity and size of the gas 
bubbles is large compared to unity. The interfacial tension is also large enough to 
maintain the bubbles' approximate spherical shape. We wish to derive the averaged 
equations when spatial gradients of various macroscopic quantities, such as the 
average velocity or the volume fraction of bubbles, are small, and hence it will suffice 
to obtain averaged equations that are valid to first order in the spatial derivatives 
on a macroscopic lengthscale. We also wish to derive the averaged equations in a 
form such that all the quantities that are needed in the analysis of the flows that are 
slowly varying in time and space can be estimated to the leading order from dynamic 
simulations of homogeneous flows, as they are the simplest kind of flow to simulate. 
By homogeneous flows, we mean flows in which there are no macroscopic variations 
in velocity or volume fraction. Since the density of most gases is negligibly small 
compared to that of liquids, we treat the bubbles as massless. Finally, we also restrict 
ourselves to the case when both phases may be regarded as essentially incompressible. 
For acoustic applications, of course, the compressibility of the phases are important, 
and therefore the equations to be derived here cannot be used for such applications. 
The averaged equations for such applications have been derived by a number of 
investigators including the most recent work by Sangani (1991). In that study, the 
focus was mainly on problems in which the temporal variations in the averaged 
quantities were of prime importance, whereas in the present study, the interest is in 
correct modelling of the spatial variations. 

The equations of motion for an incompressible liquid are 

V - U L  = 0, ( 1 )  

where p is the density of the liquid, uL and p L  are the velocity and pressure fields 
for the liquid phase, g is the gravitational acceleration, and z," is the viscous stress 
tensor defined by 

,u being the viscosity of the liquid. 

therefore the momentum equation for the gas phase is simply 

7," = p[VuL+ (VUL)+], (3) 

The density and viscosity of the gas phase are taken to be vanishingly small and 

v p  = 0, (4) 

which implies that pressure inside any bubble is uniform. 
To obtain the ensemble-averaged equations for the overall medium, we follow the 

approach taken in Sangani (1991) and introduce an indicator function x defined to 
be unity for a point x lying in the liquid phase and zero for the gas phase. Since there 
is no mass transfer at  the gas-liquid interface, x is convected along with the fluid, and 
therefore we have 

ax --+u.vx = 0 
at 

at all points in the medium. It may be noted that x has a jump discontinuity at the 
gas-liquid interface, and therefore V x  equals a delta function situated a t  the 
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interface multiplied by a unit normal vector a t  the interface pointing into the liquid 
phase. Similarly, ax/at is also singular at the interface and can be determined from 
Vx and (5). 

The ensemble-averaged equations for the overall medium can now be determined 
by multiplying the equations of motion for the liquid phase by x and those for the 
gas phase by 1-x, adding them, and taking ensemble averages of the resulting 
equations. Thus, since both phases have been assumed to be incompressible, the 
continuity equation for the overall medium is given by 

where the angular brackets denote the operation of ensemble averaging. Taking the 
divergence outside the averaging procedure produces 

(7)  
The second term on the left-hand side of the above equation vanishes identically on 
account of the kinematic condition at  the interface, and thus we obtain 

v*u=o (8) 

(9) 

( X V . U L + ( l - X ) V . U G )  = 0, (6) 

v .  ( X U L +  (1 -x) UG) + ( V X .  (UG- UL)) = 0. 

with the ensemble-averaged velocity U of the mixture given by 

The result (8) is rather obvious since we expect the overall medium to be 
incompressible when both of the constituent phases are incompressible. 

We now proceed in a similar manner to derive the averaged momentum equation 
for the overall medium. Combining (2) and (4) we obtain 

u = (xuL+ ( 1  - x) UG). 

= - VP + (1  - p) g + v - (xzt) + (VX ( 8  - aL)), (10) 
where r~ is the stress tensor, i.e. adj = -p6dj+~,ij. The third term on the left-hand side 
of (10) vanishes identically due to (5), whereas the last term on the right-hand side 
can be expressed as 

(ax (G- 4)) = 1 (nj(a:- a$)>, (x I x,)P,(x,) Ul, (11) 

where Pl(xl) is the probability of finding a bubble at x, such that point x lies on the 
surface of this bubble, and ( ),(x I x,) denotes the conditional average of a quantity 
evaluated at x given a bubble a t  x,. Here we have assumed, for simplicity, that the 
bubbles are monodisperse with radius a. The above integral involves evaluating the 
integrand for different bubbles whose centres lie on the surface Ix-x,~ = a. It is 
convenient instead to compute integrals on the surface of a single bubble located at, 
say, x. To accomplish this, we note that a conditional-averaged quantity such as 
(f)l (x I x,) may be treated as a function of the position of a point relative to the 
centre of the test bubble, i.e. x-x,, and the centre of the bubble, i.e. x,. The 
variation of ( f ) l ( x - x l , x l )  with respect to the first argument is rapid while that 
with the second is slow. Thus, we first write 

axj x--xll=a 

((+a;) n,>1 (X-X,, Xl)Pl(Xl) u, 
Ix--XII-u 

- ( ( 4 - p - f l $ b j ) ,  (-,x--S)P1(x--s)~,, (12) 

s 
- s.=. 
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in which s = x-x, and s is the magnitude of the vector s. Next, when the average 
quantities vary slowly in space, the use of a Taylor series expansion of the integrand 
in the above equation near x yields 

( (ag -~ ,T; )n , ) , ( s ,x - - s )P , (x - s )dA ,  = < ( a g - f l ; ~ ) n j ) l ( S , X ) ~ ,  
Js-a 

r 

Now, since a: = -pGStf, and since the pressure inside any gas bubble is uniform, the 
integral of g$nj in the first term on the right-hand side of (13) vanishes. The 
remainder in that term integrates to the total force exerted by the liquid on the 
bubble at  x, and this also vanishes as the bubbles are massless. Substituting (13) for 
the last term in (lo), and rearranging, we obtain the averaged momentum equation 
for the overall medium as 

where U: is the average velocity of the liquid phase defined by 

p is the volume fraction of the gas bubbles, i.e. 

and Zij is the stress tensor for the overall medium and equals 

where we have made use of the relation P,(x) = P(x)/'ub, v,, = $ 7 ~ ~  being the volume 
of the bubble. The averaged momentum equation (14) is the same as that derived by 
Biesheuvel & van Wijngaarden (1984) who considered the slightly more general case 
of compressible bubbles and used a somewhat different procedure for deriving these 
equations. 

It may be noted that the expression (17) for the overall stress is actually valid for 
all Reynolds numbers. The first term on the right-hand side of (17) corresponds to the 
Reynolds stress, while the deviatoric part of the second term is related to the stresslet 
that is required in the evaluation of the effective viscosity of suspensions under low 
Reynolds number conditions. In the case of large Reynolds number flows, we may 
neglect 7: in the above expression, and thus this part of the overall stress is related 
to a particular distribution of the inviscid pressure at the interface. Thus, we write 

Here we have made use of the fact that the pressure inside the bubble is uniform and 
therefore the surface integration of pG(3ni nj - Sii) vanishes. Now, the second term on 
the right-hand side of (18) can be shown to equal 8naTS, plus a term which is of 
O(paTP/P,). Here, T is the interfacial tension, V is the characteristic velocity of the 
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bubbles, and Pa is the pressure in the liquid in the absence of flow. The correction 
term arises because of a small change in the radius of the bubbles due to variations 
in the dynamic pressure resulting from the flow, and its magnitude is negligible in 
most practical applications. 

In the limit of small /?, if the interactions among the bubbles may be neglected, the 
above quantities can be readily related to  the velocity of the bubbles relative to the 
liquid (or the mixture) by 

2; = -Tg$+-v"sij, P 3P 
20 20 

z;*=--s 2T +-~v,--vvz~*, 9p 3P 
a '' 20 20 

which are in agreement with the expressions derived by Biesheuvel & van 
Wijngaarden (1984). Here = @ - 9 is the velocity of the gas phase relative to the 
mixture. It is important to note that the dynamic part of the stresslet term 
represented by the last two terms in (20) has a zero trace, and thus it contributes only 
to the deviatoric stress of the overall medium. In situations where the gradient of p 
is not zero, the most significant contribution to the overall stress arises from the 
surface tension term since the dynamic quantities are O(We) compared to it, We = 

pav"/T being the Weber number. 
The continuity and momentum equations for the overall medium (cf. (8) and (14)) 

together constitute a total of four scalar relations among a total of eight variables : 
V, UL, P ,  and 8, and therefore, it is clear that more relations are needed for a unique 
determination of these quantities. 

As mentioned in the Introduction, Biesheuvel & van Wijngaarden (1984) proposed 
using an additional relation based on the force balance on a single bubble to close the 
system of equations. This relation is 

where $vb is the virtual or the added mass associated with the relative motion of a 
massless bubble in the mixture. A t  steady state, the magnitude of the relative motion 
is determined from the balance of gravitational and viscous forces, and an 
acceleration in the mean flow causes this relative motion to change as given by (21) 
whenever interactions among the bubbles and spatial derivatives of /3 or mean flow 
are negligible . 

Our aim, as mentioned in the Introduction, is to systematically derive the terms 
that are necessary to account for spatial variations, and thereby to obtain 
expressions for various averaged quantities that should be evaluated from dynamic 
simulations. This requires deriving another set of averaged equations corresponding 
to the relative motion of the dispersed phase. 

3. Averaged equations for the dispersed phase 
The continuity equation for the dispersed phase can be obtained simply by taking 

the ensemble average of the continuity equation for the gas phase multiplied by its 
indicator function 1 - x. This yields 

( ( l - x ) V - u G )  = 0 or v . ( / ? P ) + ( v ~ - u ~ )  = 0. (22) 
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The second term on the left-hand side of (22) equals ( - a x / a t )  (cf. ( 5 ) ) ,  and thus, we 
obtain 

(23) 

The main difficulty is in deriving the momentum equation for the dispersed phase, 

ap v. (PP) +- = 0. 
at 

( (1  -x) VPG> = 0, (24) 
as this yields 

from which no further progress can be made to obtain a relation for the force acting 
on the dispersed phase in terms of various different physical phenomena, such as the 
added mass or the viscous effects, as was done, for example, in writing down (21). 
Therefore, we need to follow a different approach to derive the averaged momentum 
equations for the dispersed phase. 

At  large Reynolds numbers, the force balance on a massless bubble a in the midst 
of a dispersion containing many other bubbles, yields (cf. I) 

where F;,v and F& are, respectively, the viscous and gravitational forces on the 
bubble a, va is the velocity of the bubble, S" is the surface enclosing the bubble, and 
1: is the impulse associated with the bubble as defined by 

1; = -pJ/n,da; (26) 

with 4 being the velocity potential. As discussed in more detail in I, the velocity field 
can be reasonably well approximated in the large Reynolds number limit by the 
inviscid, irrotational flow approximation, for which it is possible to write uL = V#. 
The integral in (25) is thus to be evaluated from the potential flow approximation. 
The viscous force evaluation is also discussed at length in I. Finally, the time 
derivative in (25) is to be evaluated following the motion of the bubble a. 

For a single bubble moving with velocity u" in a liquid, whose velocity at infinity 
is U, it is easy to show that the instantaneous velocity potential is given by 

a3 
@ = U*x+-( (U-  2r3 LIG).x, 

in which r and x are measured from the centre of the bubble, and a is the radius of 
the bubble. The impulse associated with such a bubble is given by 

with V, = V-S. Also, for the case of a single bubble, it  is easy to show that the 
integral on the right-hand side of (25) vanishes on account of symmetry of the flow 
around an isolated single bubble. Thus, we see that (21) is obtained simply by 
averaging (25) without the integral term in that equation. 

When spatial variations in p or V are non-zero, a contribution will arise from the 
first term on the right-hand side of (25), and we wish to determine it. For this 
purpose, we find it most convenient to use an approach similar to that taken by 
Biesheuvel & Gorissen (1990). 

3.1. Derivation of the momentum equation for the dispersed phase 
We assume that there are N bubbles within a unit cell and that the entire space is 
filled with replicas of this cell. Let xa and va, a = 1,2, .  . . , N ,  denote the position and 
velocities of these bubbles at some instant and let xL denote the lattice vectors for 

-Ti = PWb [iV,- 91, (28) 
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the periodic arrangement. The velocity and spatial distribution of the bubbles is thus 
unchanged upon a translation by xL. The reason for creating such an artificial 
periodicity condition in our formulation is simply the need to properly account for 
the long-range hydrodynamic interactions among bubbles in a definitive manner. 

We further assume that the velocity field everywhere in the liquid can be 
approximated in terms of a velocity potential and that the viscous force on bubbles 
depends only on the velocities of the bubbles at a given instant and not on their past 
history. In  this case, the complete state is determined if the velocity and position of 
each bubble is specified. Let f N ( t ,  C,, C N )  denote the N-bubble probability 
distribution function for finding bubbles in the neighbourhood of configurations 
CN = (xl, 2,. . . , xN ) and CN = (vl, u2, .  . . , vN ). Since the unit cell always contains N 
bubbles, f N  satisfies the normalization condition 

Also, since f N  is conserved in the phase space, it satisfies 

To obtain averaged continuity or momentum equations for the dispersed phase, we 
multiply the above equation by an appropriate dynamical variable and then 
integrate the resulting equation over the phase space of positions and velocities of the 
bubbles. The dynamical variable can be chosen to be any function of x, C,, and CN 
but not oft .  For example, the continuity equation for the dispersed phase derived 
earlier (cf. (23)) can also be obtained if we multiply (30) by the dynamical variable 

It may be noted that integration of the above quantity multiplied byf, is related 
to volume fraction /3 of the gas bubbles by 

P(x,t) =N! c ~&(x-xa-xL)fNdCNd6N. (32) 
vb s.1, L 

Actually, ,13 computed in this manner is somewhat different from our previous 
definition (cf. (16)) due to the finite size of the bubbles. The definition (32) assigns all 
of the volume of the bubble to be located at the centre of the bubble, which is only 
approximately correct. The difference in the two definitions is significant, however, 
only when the second-order gradients of /3 are to be included in the calculations. Since 
in the present study we wish to derive the averaged momentum equation correct only 
to the first spatial derivative in /3 or the velocity field, this distinction between the 
two definitions of 

Now multiplying (30) by (31) and integrating over the phase space, we obtain 
is not important. 
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The right-hand side of the above equation can be simplified with the use of the 
divergence theorem to yield 

N N 

- fNdCNddlN x [ U y * v 7 , r + i t u * V , u ]  c 6 ( X - x a - X , )  (34) 
Y-1 a=l L N !  vb 1' 

plus an integral on the surface of the phase boundary which can be shown to vanish 
because of the periodicity of the probability density function and the velocity fields. 
Now, we note that in (34) only the derivative of the delta function with respect to 
X Y  with y = a is non-zero, and upon using V,6(x -xa-xL)  = - V X 6 ( x - x a - x L ) ,  we 
obtain the continuity equation for the dispersed phase (23) with 

N 

xu"6(x-xL-xa)fNdCNdc~.  (35) 
a=l  L 

The same procedure can be repeated now for determining the momentum (or 
impulse) equation for the dispersed phase. For this, we use the dynamical variable 

N -PIi a = - ~ ~ / d C , d C , f N  ~ V ; ~ ; ~ ( X - X ~ - X , )  

at axjN! a=l L 

N 

+- dCNddlNfN . c & 6 ( X - X L - X a ) ,  (38) 
N !  wb I a=l L 

where f i  is defined as 
N 

f i  = c (u~-vx7+u~.v~~)I;  (39) 
y=l  

and equals the time derivative of the impulse associated with the bubble a following 
its motion in the dispersion (cf. (25)). We therefore substitute for @ from (25) into 
(38) and then average separately each of the three terms on the right-hand side of 
(25). The viscous and gravitational forces can be averaged in a straightforward 
manner. The main difficulty is in determining the average of the first term on the 
right-hand side of (25), which we shall refer to as I&. This is the force due to potential 
flow interactions among the bubbles. As shown in I, the sum of this term over all 
bubbles in the unit cell vanishes, i.e. 

N 5i& = x (+;u,"-u;w;)n,dA = 0 (40) 
a-1 a-1 S" 

when the velocity of the liquid is derived from a scalar potential. Thus, the average 
of this term over all bubbles in a unit cell is zero for homogeneous flow conditions. 
In the presence of spatial variations, the last term on the right-hand side of (38) is 
expressed in terms of a fluid dynamic interaction potential by means of 
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where 76 is to be determined. Substituting the above result into (38), making use of 
the continuity relation for the dispersed phase (23), and rearranging, we finally arrive 
at 

(42) 
a I  1 -+ UG.VI= - -V. (Pz)+fv+f , ,  
at P 

where (43) 

z = z k + z P  (45) 
with the kinetic or translational part of the dispersed-phase stress rk defined via 

We now proceed to determine 75. 

3.1.1. The potential contribution to the dispersed-phase stress 

bubble as (cf. I) 
The velocity potential can be expressed in terms of multipoles at  the centre of each 

(47) 

where 8, is the periodic Green's function for the Laplace equation (Hasimoto 1959; 
Sangani & Acrivos 1983) which satisfies 

N m  
# = G*x+ C C A ~ n , , ( * ) " V ' n ' X l ( ~ - x " ) ,  

a=l n=1 

V.VS, (x )  = 47G[Y-1-2 &(x-x,)]. (48) 
L 

Y is the volume of the unit cell of the periodic lattice, and 
n 

m-0 
ATn)( - )Wn) = 2 (Aim A, +Xi ,  Am) (49) 

with A~ = [a,m+a,m], A, = i[a,m-a,m], (50) 
3, = a/axl, ( a ) "  denotes an n-fold scalar product, Wn) and nth-order gradient, = 
x2 + ix3, and 7 = x2 - ix,. G in (47) is related to the average velocity of the dispersion 
as shown in I. The strengths of 2"-multipoles, A(n),  can be determined as described 
in I from the boundary conditions on the surface of the bubbles, and subsequently 
the integral in (25) can be evaluated to determine the force acting on the bubble a 
due to potential flow interactions. To understand how one evaluates the potential 
stress from the magnitudes of these multipoles, let us first consider a simple case of 
well-separated dilute random arrays for which the separation between any two 
bubbles is large compared to their radii. 

Well-separated dilute random arrays. For such arrays, the velocity potential can be 
adequately approximated by keeping only the leading-order term with n = 1 in (47). 
This amounts to treating the bubbles as point dipoles located at their centres. The 
magnitude of these dipoles can be determined by first expanding near the surface 
of bubble a as 
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where A" = A&, s = x-P,  and C" is related to the regular part of q5 near xa by 
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C" = V@(X.). (52) 

The singular part of q5 near xu corresponds to the derivative of the term 11s in the 
expansion of S,(x-x") near its singularity (cf. (as), Hasimoto 1959), and therefore, 
the regular part of 4 is obtained by subtracting this singularity from Sl, i.e. 

N 

y=l 
Ca = G +  A"*VVS,(X"-X"), (53) 

where Si = S,  - l/s for u = y and Si = 8, otherwise. The impulse associated with the 
bubble u (cf. (26)) can be readily evaluated from (51) to be given by 

I" = m(A"aP3 - C"), (54) 

tra = 2~"a-3+ c", (55) 

and the velocity of the bubble by 

where m = pub. Let us now consider the case in which the pressure gradient across the 
dispersion is held constant. In this case, G is independent of time, and, since we 
expect the dispersed-phase stress to be independent of the magnitude of the average 
velocity of the mixture, we may choose it be zero without loss of generality. The force 
on bubble 01 due to potential flow interactions can be evaluated from (25) by 
substituting uL = Vq5. However, a simple calculation will show that the integral in 
(25) with point dipoles alone used in the local expansion of q5 (cf. (51)) vanishes. In 
order to obtain a non-zero estimate, we shall also need to keep the quadrupole AT2) 
term in the expansion. The leading-order estimate, however, can be obtained from 
the dipole approximation alone by using an alternative expression for the force as 
derived from the Langrangian (cf. Biesheuvel & Gorissen 1990). This expression is 

I: = VXa K ,  

where K is the kinetic energy per unit cell which, for G = 0, can be evaluated from 

l N  
(cf. I) 

(57) K = - P' * v". 
2,-1 

K = m 2 [A".A"a-6-$4". C"a-3-BCa. C"]. 

Substituting for r" and v" from (54) and (55) into (57), we obtain 

N 

(58) 
a-1 

In the point-bubble approximation, we regard a as a small quantity, and the inter- 
bubble distances as O( 1).  To the leading-order approximation, therefore, 

A" = ga3~". (59) 

Now using (53) to evaluate C" and taking the gradient of K with the position of the 
bubble yields the following leading-order estimate of the potential interaction force 
on the bubble a: 

N 

4 = -xpa6 C V ~ U Y ( . ) ~ V ( ~ ) S ~ ( X ~ - X ~ ) ,  (60) 
Y-1 

where the gradients are to be evaluated with respect to x"-xY. Expressed in this 
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manner, we see that the potential interaction force on bubble a, i.e. 4, may be 
thought of as a sum of forces acted upon by each bubble y in the dispersion with a 
pair potential between the bubbles a and y being, roughly speaking, proportional to 
VVSi(P-xY). The total potential can then be obtained by adding over all the pairs 
in the dispersion. This simple scheme, however, needs some modification since 
VVX:(xa-xy) behaves like ~ / ( x “ - x Y ~ ~  for distances that are small compared to the 
unit cell size, and hence this sum may not converge for infinitely large unit cells. In  
other words, we need to proceed with some caution. 

As pointed out in Sangani & Acrivos (1983), the use of the periodic Green’s 
function 8, in the analysis avoids the difficulties associated with the non-convergence 
of long-range interactions. It is easy to show, using the Green’s identity, and the 
Green’s function for the Laplace equation in an infinite space (l/lxl), that S,  has the 
following representation : 

For large Ix - xLI, the integrand in the above expression can be expanded in a Taylor 
series to show that for cubic unit cells Q, decays as ~ / I x - x , ~ ~ .  Thus, although the 
summation of each term inside the square bracket in (61) diverges as lxLl +a, the 
overall expression for 8, converges and the value of S,  at a point within the basic unit 
cell does not depend on the manner in which we take the limit lxLl +a. Now we follow 
Biesheuvel & Gorissen (1990) and determine the expression for the potential 
contribution to the stress tensor using the particular form of pairwise decomposition 
we have obtained in (60). In  the following manipulations, we take bubble a to be in 
the basic unit cell and write the total force on it as a sum of forces due to each bubble 
y and its periodic images. Thus 

N N  

=-npas/fNdcNdCN a = l y = l  c x x V j ” V $ a ; j k [ p ) ( R - x L ) ] 6 ( X - X a )  L (62 b )  

N N  

= n/la6/fNdCNdcN c W S V I a ~ ~ k [ p ) ( R - X , ) ] 6 ( X - X L - x Y )  ( 6 2 ~ )  

= - i7‘Cp(Z6 sf. dCN d6N x 2 V y  Vk a;&)( R - X L ) ]  

7-1 L a=l 

N N  

a = l y = l  L 

x (S(x - P) - S(x - XL - XY) ) ,  ( 6 2 4  

where R = xa-xY and ai E a/aRi. Equation (62a) is a simple identity in which the 
summation over a is replaced by the summation over y ;  (62b) is obtained from (60); 
(62c) is obtained by making use of the fact that V@)v(R)  is an odd function of R ; and 
(62d) is obtained by adding the terms on the right-hand sides of (62b) and (62c) and 
dividing by two. 

Now to express the above quantity as the divergence of a stress tensor, we use the 
usual procedure adopted in the statistical mechanics literature (see, for example, 
Rice & Gray 1965) and expand the delta function in the Taylor series 

(63) 
a 

jaxj 
d(x-x,-xY) = 6 ( x - x ” ) + ( R - x  ) -6(x-XU)+.... 
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Since azjkT decays as l/Ix-xLls, the use of Taylor series expansion of the delta 
function is justified even for large x - x L .  Substituting the above expansion in (62), 
and comparing the resulting expression with (41), we obtain the expression for the 
potential flow interaction contribution to the dispersed-phase stress as 

N N  

PT$ = - f N  dCN dQN ( -npas) 'U; V L  y i m n j ( X )  d(X-X"), 6-34) 
2N! wb I a=1 y-1 

where y t m n j ( R )  = C (R-xL)ja!mn~(R-xJ-  (65) 
L 

It is easy to verify that the above quantity converges as lxLl -+a. For the purpose 
of numerical evaluation of the stress, it is useful to express this quantity in terms of 
periodic functions S ,  and S, as Ewald's summation technique described in Hasimoto 
(1959) can then be readily used. Here, the function S,  satisfies V2S, = S,  and is given 
by 

L dr'] . 

The summation in this case does not converge even though S,  itself is finite. Thus, 
the above representation should not be used for evaluating 8,. In  the present study, 
however, we shall only be interested in V(")S, with n 2 4, and it can be seen that such 
derivatives of S,  can be evaluated from (66) as the sum is then convergent. 

To recast (65) in terms of derivatives of S,  and S,, we use the identity 

Rtl ac...in+lR- 1 - - a n + i  d1...gn+, R- (6,1,2agt~n+,+di,*3a~_1in+,+ ... n terms)R-l. (67) 

With n = 3 in the above identity, and summing over xL,  we obtain 

where 
yimnl = 2qjmn s; - (&ij ahn +dim a,z, + s,, a:,) S; + lc.;gnj, (68) 

It can be shown that, for a simple cubic unit cell, the above quantity is independent 
of R and equals 

where dimnl equals unity for i =j = m = n and zero otherwise. 

Non-dilute arrays. We now return to the case of non-dilute arrays. The key step in 
the previous derivation was the decomposition of the total potential interaction force 
on bubble a in terms of a sum of the forces exerted by the other bubbles. For the 
general case of non-dilute dispersions, such a decomposition may not always be 
possible. Indeed, a straightforward calculation of the total kinetic energy of the 
system in terms of higher-order reflections would quickly involve interactions among 
three or more bubbles. Fortunately though, such a decomposition is possible in the 
present case as we shall now show. 
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The formula (56) for evaluating the potential interaction force from the gradient 
of the kinetic energy is not suitable for non-dilute arrays, as the explicit dependence 
of the total kinetic energy on the position of the bubbles is not known. Instead, it 
proves more convenient to evaluate the integral in (25) directly from the local 
expansion of $ near the surface of bubble a. Defining $* = # - v a . ( x - x a ) ,  we have 

Next, let the expansion of $* near the surface of bubble a in spherical harmonics be 
given by (cf. I) 

with 

(72) 

(73) 

and s = x-xa. Now the boundary conditions at the surface of the bubble give the 
relationship 

a-n-l C tman  = - 
n nm 

(74) 

Similar expressions apply to f;,. Substituting (72) into (71),  and simplifying, we 
obtain a relatively simple expression for 4. For example (cf. I), 

m n  

Gl = C C H n m  Ern.E+l, m +f:m.k+l, m1, 
n=l m=o 

where the functionsg, etc. are to be evaluated at  s = a ,  and Hnm is given by 

27cpn(n+2) ( n + m + l ) !  
(1 + SmJ. (2n+ 1) (2n+3)  (n -m) !  H n m  = 

Now we make use of (73) and (74) to obtain 

2n+ 1 Da a-n-l - 2n+ 1 
fimca, = - + 1 C i m  an. n nm 

(75) 

(77) 

Substituting for Em and f i+ l ,  
obtain 

in (75) in terms of DZm and C;+,, respectively, we 

Now we make use of the fact that C;+,. must be related to the regular part of near 
x" (cf. (13) in I) by 

1 

X - i  

- C;+,,m - (79) 

Substituting for the regular part of q5 from (47),  using the relations between D i m  and 
AZm (cf. (12) in I), combining (78) with (79), and rearranging we obtain 
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in which R = xa-xy. Similar calculations can be made for the x2- and x,-components 
of 8, and the final result is 

n=1 k=l  y-1 

It may be noted that this result is valid for any G (cf. (47)) since evaluation of C;+,, , 
requires second- and higher-order derivatives of $ for n 2 1 and these derivatives of 
G + x vanish identically. 

For the point-bubble approximation, A@ = $a3va, and thus we recover the 
expression (60) by keeping only the terms with Ic = n = 1 in (81). For non-dilute 
random dispersions, the multipoles A&) indeed depend on the interactions among 
many bubbles, but, as far as the derivation of the potential flow stress is considered, 
these multipoles may be regarded as constants, just as the velocities of the bubbles 
were treated as constants in our derivation of the stress tensor for the well-separated 
dilute random arrays. It may be noted that although (81) has some similarity to the 
expression based on the kinetic energy (cf. (56)), there is no direct relation between 
the terms appearing in it to those in the evaluation of the kinetic energy. Since the 
constants that appear in the expression for K are functions of the positions of all the 
bubbles, it is unlikely that the result (81) can be derived starting from (56). 

The result (81) gives us an exact formula for decomposing the potential flow 
interaction force (6) into the sum of forces exerted by all other bubbles in the 
dispersion. Now, it is straightforward to derive the exact expression for the stress 
tensor. If we take the mean relative motion to coincide with the %,-axis, it will suffice 
to evaluate T$ and rfl because of the isotropy of the microstructure in the plane 
transverse to the mean relative motion. Substituting (49) into (SO), making use of 
(61) and (67), and simplifying we obtain 

TP 11 - - - g3 [c( - i )y~;, A~ +&, A,) ( ~ i ~  A~ + xij iij) a::(2a;, S; - ( p  + i s:) + 7;3, 

7P - - - $$ [L'( - l)"+l( Ic + n + 1) (A;, Am +A"",, Am) (A& Aj +Axj &) sf + r ; 3 ,  

(82) 

(83) 

where the summation is to be carried over n, m, Ic ,  j, a, and y ,  the functions Si and 
Sl-, and their derivatives are to  be evaluated at R = xa - x y ,  p = n - m + k -j, and riel" 
and r;tn are the contributions that arise from terms similar to @iznnj in (69). Only the 
dipole terms contribute to these quantities because the integrals such as one on the 
extreme right of (69) vanish when derivatives of order greater than 3 of 1 /IR - xL - x'( 
are involved. This is not surprising as one would expect the renormalization of X,, 
represented by the integral term in (61), to be necessary only for evaluating its 
derivatives of order less than or equal to 2. Thus, we obtain 

(84) 
N47c 

a-1 y=l Y 
7;y = - x c - ~ [ 4 A ~ , ~ y , + ~ ~ 1 ~ ~ 1 + ~ ~ , ~ ~ 1 1 ,  

The strengths of the multipoles can be determined directly by solving the many- 
bubble interaction problem as shown in I. The derivatives of S,  can be evaluated 
from the formula given in Sangani, Zhang & Prosperetti (1991) which employs 
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Ewald's summation technique. Similar expression can also be obtained for the 
derivatives of S,, and hence (82)-(85) provide us with an exact method for 
determining the potential flow interaction contribution to the dispersed phase. 

Collisional contribution to the dispersed-phase stress. As discussed in detail in I, there 
is experimental evidence (Kok 1989) to suggest that bubbles do not coalesce when a 
small amount of surface-active impurity is present in the dispersion. In our 
simulations, we assume that bubbles collide in such a way as to conserve the kinetic 
energy and the momentum of the liquid. The timescale for collision is assumed to be 
small compared to the inertial timescale. It is further assumed that the fluid dynamic 
interactions in the gap between the colliding pair of bubbles is manifested as an 
instantaneous force (on the timescale of inertial motion) of collision on the colliding 
bubbles. Thus, for times close to a collision time t,, we write 

I: = m,F,S(t-t,) = -8; k = 0 for a = 3,4, ..., (86) 
where 1-2 is the colliding pair of bubbles, m, = (x' -x2))12a, and Fc is the magnitude 
of the impulse acting on the colliding bubbles that is to be determined from the 
conservation of the kinetic energy of the liquid (cf. I). For evaluating the 
contribution to the dispersed-phase stress due to collisions, the trial function must 
strictly be taken as a function of (C,, C,) and thus no explicit dependence on time 
is permissible. This can be done by replacing S(t - t,) in the above by 6()x1 -21 -2a).  
Now we use 

N c 4 S(x - x") = +($ + 2) (6( x - x') + 6(x - x") ++($ - i") (S(x - XI) - S(x - 2)) 
a=l 

= -~V*{(X'-X') ( $ - ~ ) ~ ( X - X ' ) + ( X ~ - X ' ) ( ~ ~ ~ - & ) ~ ( X - X ~ ) )  (87) 

to obtain the collision contribution as given by 

where T' is the length of the time interval and the summation is over all collisions 
occurring during that interval. 

3.2. Remarks on the derivation 
The approach we have taken in deriving the expression for the stress tensor is similar 
to that used in deriving the expression for pressure in pure liquids from statistical 
mechanics principles. There the problem is to average out the molecular interactions 
to arrive at the pressure to be used in the continuum description of liquids. The 
pressure in a liquid is the sum of two quantities. The first, referred to as the trans- 
lational or the kinetic part of the pressure, is related to the average of m'v;vj.- 
m'ET$, where m' is the mass of a molecule, v4 its velocity, and the average 
velocity. In the case of bubbles dispersed in liquids, the mass of a bubble is, of course, 
negligible, but there is still a virtual mass associated with its motion under potential 
flow conditions. The impulse I" in the dynamics of bubbly liquids plays a role similar 
to that of momentum m'tr" in molecular dynamics. Thus, (46) simply represents the 
translational contribution to the stress tensor. For ideal gases in which the 
interaction among molecules is negligible, the pressure is entirely due to this 
translational part. For dense gases and liquids, there is a second part of the pressure 
that arises from the interactions among molecules. In molecular dynamics, it is 
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customary to  represent these intermolecular forces in terms of pair potentials, and 
thus the second part of the pressure is usually expressed in terms of these pair 
potentials. Deriving the equivalent form of pair potentials for bubbly liquids is the 
main contrib:.xtion of the present study. We showed that while the multiparticle 
interactions are quite important, it is still possible to interpret the force acting on a 
representative bubble as a sum of pairwise interaction forces. The intermolecular 
forces in ordinary liquids are short range and therefore, the pair potentials can be 
added in a straightforward manner to  determine the potential contribution to the 
pressure. I n  the statistical mechanics literature for pressure in liquids, the potential 
part of the pressure is sometimes expressed in terms of a quantity which is the sum 
of GFp over all the molecules. Here F;  is the force on the molecule a. When the 
intermolecular forces are short range, this alternative expression provides an efficient 
method for determining the pressure via simulations. We have followed a different 
approach here mainly because the interactions in our case are long range. 

It may be noted that (42) is equivalent to  (5.13) in van Wijngaarden & Kapteyn 
(1990). A comparison of these two expressions suggests that their dispersed-phase 
tensor is the same as the translational part in our (46). It may appear a t  first, by 
analogy with the theories for pressure in gases at low number densities where the 
translational part is the most important one, that the expression that van 
Wijngaarden & Kapteyn obtained must be valid when p is small. This, however, is 
not the case as there is an important difference between the two systems. In gases a t  
finite temperatures, there is considerable randomness in the motion of molecules, 
which makes the variance in velocity, and hence the pressure, finite even in the limit 
of zero number density. In the gas-liquid dispersions that we have examined, the 
variance in the velocity of the bubbles vanishes in the limit of small /? (provided that 
the bubbles do not form aggregates), and thus both the translational and potential 
parts of the stress tensor are of comparable magnitude. Indeed, as we shall see in 94, 
the potential contribution to the stress is two to three times larger than the 
translational contribution for p as small as 0.1. 

3.3. Energy equation for the dispersed phase 
The momentum and continuity equations for the dispersed phase derived in previous 
sections (cf. (23) and (42)) constitute a total of four scalar relations among p, T( = 
p- q, I i ,  and the average frictional force fi,,, I n  the limit of large Reynolds number 
flows, the kinetic energy of the liquid remains approximately constant over a 
timescale small compared to  the viscous relaxation time a2p/,u and the microstructure 
of the dispersion depends on the kinetic energy of the liquid. Thus It will not only 
depend on j3 and but also on the kinetic energy of the dispersion. When the 
Reynolds number is large but finite, this kinetic energy will slowly change with time, 
and hence, after a sufficiently long time, the kinetic energy of the liquid, and thereby 
the microstructure of the dispersion, under homogeneous and equilibrium conditions 
will depend only on p and K.  Thus, Ii and fa,, will eventually be functions of j3 and 
V, only. When spatial and temporal fluctuations from this homogeneous state occur, 
Ii will vary because of the variations in the kinetic energy in addition to  those in /3 
and q. Thus, for a correct analysis of such flows, we must also include an additional 
relation corresponding to  the changes in kinetic energy. Such equations are also used 
in the study of granular flows. 

The energy equation can be derived in essentially the same manner as the 
momentum equation. The key is the choice of the proper trial function such as (36) 
for the momentum equation. I n  particular, the trial function to be selected must 
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satisfy a condition such as (40). As discussed in detail in I, which quantities remain 
invariant depends on the conditions of simulations. If the average velocity of the 
liquid phase, or the pressure gradient across the dispersion, are maintained constant, 
then the sum of ea remains invariant. Here, ea is defined by 

ea = z v r .  (89) 
If, however, the average velocity of the mixture is held constant during simulation, 
the sum of ea defined via (57)  in I remains invariant. In the present study, we shall 
determine the average quantities for the former condition, i.e. for the constant 
average velocity of the liquid phase. Thus, we shall use (89) as our definition of e". 

Now the derivation of the energy equation is quite straightforward and, for 
inviscid interactions, yields 

where 

ae ae i a  -+P- = ---(/3q.), 3 
at 3 axf paxf 

ea6(x - xu) f N  dC, dCN, 

and qj is the energy flux vector for the dispersed phase and consists of three terms q;, 
qj', and qj" corresponding, respectively, to the kinetic, potential and collisional 
contributions. The kinetic part is given by 

whereas the potential and collisional contributions are defined via 

N --/?(q$'+q;) a =$Sf,dC,dC, eaS(x-xa). 

axj a=l 
(93) 

We have been unable to obtain an exact expression for the time rate of change of 
energy associated with bubble a,  i.e. Q", as the sum of pair interaction potential 
energies. Therefore, an approximate expression based on point bubbles (dilute well- 
separated arrays) will be presented here. The accuracy of this expression will be 
tested against the numerical results for d" in the next section. 

To determine the point-bubble approximation for C", let us choose G = 0. The 
impulse and velocity of bubble a are related to the dipoles by (54) and (55) .  Taking 
the time derivative of the scalar product of these two expressions, we obtain 

C" = +m( 2Aa. kaa-6 - &. Aaa-3 - Ca. Aaa-3). (94) 
To determine La to leading order when a is small, we note that A", c" = O(a3),  ka = 
O(aS) .  Let us first determine & by differentiating (53). Taking G = 0, the 
differentiation gives two terms; the first involves a derivative of A7 and the second 
involves that of X"-X~ ,  of which the latter is larger. Thus 

where we used A" = $uaa3. Now using the expression for & (cf. (60)) and combining 
it with (95) and the time derivative of (54) we obtain 

a6 

4 y-1 
A. = -- (u"+2u7) Uy(*)2V(3)S;(xa--XY). 



46 A .  S.  Sangani and A .  K.  Didwania 

Combining the above leading-order estimates of A" and @with (94) and noting that, 
to the leading order, +A"u-~ = v" = Iu/(2m) we obtain three equivalent expressions 
for i": 

npas 
p = ___ 2 U " r Y ( v " + U ~ )  (-)3V("SS',(x"-x~) 

2 y=1 

' XY) . (97) 

It is easy to verify that the sum of 6 over all the bubbles in the dispersion vanishes, 
as it should for the case of inviscid interactions. 

As mentioned earlier, we have been unable to derive an exact decomposition of C" 
in pair potential energies, and therefore we would like to use the results of the above 
analysis to obtain an approximate pair decomposition. The three expressions listed 
above are equivalent for the dilute case, but one of these three may provide better 
approximation to the actual C" in non-dilute dispersions, which can be evaluated by 
using a forward time difference formula on the values of ea obtained in numerical 
simulations. A comparison of the actual values with those obtained from the above 
approximations is given in $4, where we find that the relative error is least when the 
approximation based on A" is used and largest when that based on I" is used. Now, 
comparing (97) and (60) with the exact expression for fi (cf. (80)) we obtain yet 
another approximation, which is an improvement over that given by (97) : 

The summation in (98) is to be carried over n, k, and y .  Now the potential 
contribution to the energy flux can be determined following essentially the same 
procedure as for zp and, in fact, the final expression can be written down by 
multiplying (82) with (A" + Ay)/u3 : 

x {2q1& - (p + 1) xi> +qr""], (99) 

where the summation is over n, m, k, j, y, and a ;  p = n-m+ k-j; Xy and Xi are 
evaluated at  R = xa-xy. Here, we have assumed that the mean relative motion is 
in the x,-direction. The microstructure is expected to be isotropic in the z1 plane and 
hence q!j' = qf = 0. Finally, 

We note that it may be possible to obtain a more accurate expression for 41: by 
adding a virial-type expression to the above, i.e. by adding 
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to (99). Here Aia is the difference between the actual value of P, as evaluated 
from numerically differentiating the values of ea obtained in simulations, and its 
approximate value as given by (98). In the present study, however, we have used 
only the approximate relation (99). 

Finally, the collisional contribution to the dispersed-phase energy flux was also 
evaluated by an approximate relation. During the collision, impulses of only the 
colliding bubbles change, whereas, since the velocities of all the bubbles change, 6 is 
non-zero for all the bubbles. Once again, it is difficult to obtain a pair decomposition 
of the potential energies during the collision, and hence we used an approximate 
relation in which the changes in e" of non-colliding bubbles were neglected. Thus, we 
used 

1 
2ivT 

& = -Z(Ae1-Ae2) (xi-xf), 

where 1-2 is the colliding pair of bubbles, A denotes the total change over a collision, 
and the summation is carried over all the collisions during a time interval of length 
T. 

4. Results and discussion 
The averaged equations and the expressions for various averaged quantities, 

including the dispersed-phase stress and energy flux derived in previous sections, 
should be combined with dynamic simulations for various macroscopic flows to 
obtain their macroscale description. We shall study specific flows in more detail in 
our future work. Here, we briefly consider three special cases. 

4.1. Periodic arrays 
The first is the case of bubbles arranged on the lattice of a periodic array rising under 
gravity. In this special case, it  is possible to obtain analytical expressions for the 
dispersed-phase stress and energy flux and this is quite useful in testing the accuracy 
of the numerical calculations, particularly in view of the rather complicated nature 
of the expressions for these quantities. Moreover, the results for periodic arrays serve 
as benchmarks. 

For dilute cubic arrays with the velocity of all the bubbles equal to V relative to 
the mixture and aligned along the x,-axis, A,, are non-zero only for odd n. It is 
easy to show that, to leading orders, 

which upon substitution into (82), (83), and (107), yield 
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FIGURE 1. The non-dimensional ql, 711, and T~~ for (a)  the simple cubic lattice, 
and ( b )  the body-centred cubic lattice. 

where rn = pv,, and the constants A, and A, are given by 

The constants A, and A, can be evaluated from Hasimoto (1959) and Sangani &, 
Acrivos (1982) to be 0.386 and 3.66 for a simple cubic array, - 1.26 and 0.364 for the 
body-centred array, and -1.17 and 0.212 for the face-centred cubic array. The 
kinetic and collisional contributions to the stress and energy flux are, of course, zero. 

The above results apply when the velocity of all the bubbles is taken to be the 
same. This corresponds to one value of e ,  namely e = mP(1+2p)/(4(1-/?)). In a 
stability analysis, one would also need to evaluate how each of these quantities varies 
with e near this state of equal velocities. This can be done, for instance, by calculating 
various quantities when the velocity of each bubble is given a small random 
perturbation. Since these calculations are somewhat involved, we shall not pursue 
them here. 

The numerical results for simple and body-centred cubic arrays, obtained by 
including a sufficient number of multipoles are shown in figures l ( a )  and l ( b ) ,  
respectively. For higher values of /3, up to Z7 multipoles were needed for convergence. 
In these figures, 711 and 7ii are non-dimensionalized with rnP, and q1 with rnP. The 
calculations apply to the case when bubbles' velocities are equal. The numerical 
results obtained from computer programs were checked against the asymptotic 
formulae presented above and perfect agreement was obtained in the limit of ,I?+ 0. 
For finite p, an agreement within 2 YO was obtained for 7:: and qy for /3 < 0.1, while 
the computed value of 7ii was about 20 YO higher than the asymptotic value at  /? = 
0.1. The departure from the asymptotic values of 711 and 7ii increased quickly as p 
was increased beyond 0.1, and in fact as mentioned earlier the multipoles of as high 
as 27 order were needed to reach convergence in the numerical results. 

We note that q1 and 711 are positive for the simple cubic arrangement and negative 
for the body-centred cubic arrangement. A positive pressure implies a repulsive 
potential. It is well known from the work of Biesheuvel & van Wijngaarden (1982) 
that a repulsive potential exists between a pair of bubbles moving vertically when 
their orientation makes an angle less than about 30" with the vertical direction. 
Thus, we expect the repulsive potential for the ll-component in a simple cubic 
arrangement in accordance with our numerical and asymptotic analyses. As 
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FIGURE 2. The non-dimensional ql, 711, and T~~ as a function of non-dimensional time. 
The initial velocity distribution is uniform, N = 20, /3 = 0.1, and Re = 500. 

mentioned in the Introduction, a positive gradient in 711 with ,8 or V will have a 
stabilizing influence for the planar void fraction waves travelling in the x,-direction. 
Thus, we expect the simple cubic arrangement to be stabilized and the body-centred 
cubic arrangement to be destabilized. On the other hand, since rgr is negative for 
both arrangements, these configurations are likely to be unstable to arbitrary 
disturbances. 

4.2. Random arrays of bubbles 
The second case we consider is that of an initially random arrangement of bubbles 
rising under gravity. The initial velocity of all the bubbles is P and in the xl- 
direction, which is taken to be along the direction opposite to gravity. The 
simulations were carried out with G = 0,  which corresponds to a constant average 
liquid velocity (cf. I). 

First, let us discuss the comparison of various approximate formulae for 
determining t" (cf. (97)). We defined the relative error in estimating t" by 

where 6: is the exact value as determined from numerical differentiation of the results 
and 6" the approximate estimate obtained using different formulae in (97). For a 
configuration of 10 bubbles per unit cell with no viscous or gravitational forces we 
computed the relative errors for the three approximations. The calculations were 
made by including up to 23-multipoles. For /3 = 0.01, 0.1, and 0.3, the relative error 
e, based on the dipole approximation was, respectively, 0.039, 0.079, and 0.16. The 
corresponding values for that based on velocity were 0.043, 0.12, and 0.23. Finally, 
the relative error based on the values of the impulse was the largest, being equal to 
0.30 for /3=0.3.  Thus, we conclude that the least error is made when the 
approximations based on the dipole (the middle equality in (97)) were used. 

Figure 2 shows the results for 711, rii ,  and ql. The non-dimensionalization is the 
same as in the periodic array case. The Reynolds number based on the terminal speed 
of isolated bubbles was taken to be 500 in these calculations, and N = 30. We note 
that 711 is negative, and thus the dispersed-phase pressure has a destabilizing 
influence. The relative contributions of the kinetic, potential, and collisional stresses 
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FIGURE 3. The collisional (c), kinetic (k), and potential (p) contributions to the overall (0) T~~ in 
(a) and in ( 6 )  for simulation conditions described in figure 2. 

to 711 and 7ti are shown in figures 3(a)  and 3 ( b )  respectively. We see that the 
magnitude of the potential contribution to 711 is far greater than the translational 
and collisional contributions. The latter two are positive, but the overall stress 
component is negative. van Wijngaarden & Kapteyn (1 990) ignored the collisional 
and potential stresses in their analysis of dilute bubbly liquids. We see that 
accounting for the potential contribution changes the role of dispersed-phase stress 
from being a stabilizing influence to a destabilizing one. Indeed, this is what we found 
in I : the initial uniform structure changed to one in which the bubbles formed planar 
aggregates. The trace of the stress tensor 7ii shown in figure 3 (b)  is also negative but 
its magnitude is much smaller than that of 7,, indicating that 722 and T~~ are positive. 
The collisional contribution to these components is generally much larger than for 7,, 

owing to the fact that most collisions among bubbles occur in the plane transverse 
to the mean motion. This suggests that 722 and 733 are positive since the collisional 
contributions to them are larger than the potential interaction contribution. 

As seen in figure 2, 711 continues to decrease with time as bubbles arrange 
themselves to form planar aggregates. This result at first may appear counter- 
intuitive since it is the negative value of the stress tensor that destabilizes the 
uniform spatial distribution of the bubbles, and hence the bubbles should form a 
structure which will reduce this tendency. Actually, it is the gradient, and not the 
magnitude, of T,, that plays an important role in the stability analysis of the void 
fraction waves. The magnitude of the stress increases because bubbles get more 
closely packed as time progresses. Since the difference in the structures among 
dispersions with different values ofg become small when planar aggregates form, the 
magnitude of the gradient of 711 with p will decrease with the formation of planar 
aggregates. 

The results shown in figures 2 and 3 were obtained by including only the dipoles 
in our solution. The velocity and spatial distributions of the bubbles are reasonably 
well approximated even with this highly truncated solution. We found, however, 
that the accurate evaluation of the potential stress would require higher-order 
multipoles in the solution. The computational time required for carrying out 
dynamic simulations increases rapidly with the order of multipoles included in the 
solution mainly due to the time required in evaluating the potential stress. 
Fortunately, the magnitude of the potential stress for the given spatial and velocity 
distribution increased with the number of multipoles retained in the solution, and 
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thus the conclusion reached above, i.e. the overall stress being negative, remains 
valid. If more accurate evaluation of the stress is required, it can be accomplished by 
storing the spatial and velocity configurations of the bubbles at every few hundred 
time steps and then evaluating the potential contribution for those configurations by 
including higher-order multipoles. Most of the dynamic simulation can be carried out 
to an adequate degree of accuracy by truncating the solution to the dipoles and 
quadrupoles. As mentioned in I, CPU time for a configuration of 40 bubbles per one 
configuration is less than 2 s on the IBM 3090 at Cornell Theory Center. 

4.3. No mean relative motion 
The third case we examined is one with zero relative motion. The gravitational and 
viscous forces are absent, and the initial velocity distribution is non-uniform. As in 
the previous case, the simulations were carried out with G = 0, which corresponds to 
a constant pressure gradient across the dispersion. As shown in I, the sum of impulses 
and eu remain invariant for this situation. To avoid any bias due to the finite number 
of bubbles used in simulation toward making the dispersion anisotropic, we required 
that the sum of impulses be exactly zero throughout the simulation. Thus, instead 
of specifying the initial velocity distribution of the bubbles, we specify the impulse 
distribution. The three components of the impulses for the individual bubbles were 
chosen to be uniform random variables between -0.5 and 0.5. The initial spatial and 
velocity distribution determines the kinetic energy of the liquid. For this special 
situation, the liquid average velocity remains zero throughout the simulation, and 
both the average velocity of the gas phase and the average velocity of the mixture 
fluctuate around zero. The fluctuations for the gas-phase average velocity were less 
than 5 %. The trace of the Reynolds stress L'; is related to the total kinetic energy 
of the liquid and hence remains constant during the simulation. Therefore, the 
dispersed-phase stress was non-dimensionalized with 2:. Similarly, the viscous drag 
coefficient to be used in the energy equation was obtained by using v2 = ZE/m. (For 
simulations, however, we chose Re = 03 .) 

The situation described above is relevant to the flow of bubbly liquids through a 
pipe. In  the absence of gravitational forces acting on the bubbles, the gas-phase 
velocity is roughly the same as that of the liquid phase. If the gradient in the average 
liquid velocity is small but non-zero, the mean motion it produces would introduce 
a non-zero variance in the velocity of the bubbles. In the limit of large Reynolds 
number, one would expect the root-mean-squared velocity to be much greater than 
the mean relative motion which produces this variance. The question of modelling 
the flow inside pipes is, of course, much more complex, and therefore it will be 
addressed in future work. Here, we shall simply give the preliminary results for the 
idealized situation described in the previous paragraph. 

Figure 4 shows the results of dynamic simulations for three different values of p. 
N was chosen to equal 20 for p = 0.1 and 0.3, and 16 for p = 0.5. The results for 
/3 = 0.1 were obtained using dipoles and those for p = 0.3 and 0.5 with dipoles and 
quadrupoles. The kinetic component of 76t is unity for all p. This is simply the 
consequence of choosing the characteristic velocity based on the Reynolds stress, and 
this may be thought of as analogous to the ideal gas law. Interestingly, we found the 
viscous drag coefficient to be relatively insensitive to p, changing from about 2.0 to 
2.4 as p varied from 0.1 to 0.5. The isolated bubble approximation corresponds to a 
drag coefficient of 2. We also find that the magnitude of the potential contribution 
to the stress is much smaller than the kinetic and collisional contributions, with the 
latter increasing rapidly with /?. Because of the isotropy, we expect q, to be zero and 
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FIGURE 4. The viscous drag coefficient based on energy dissipation, and the kinetic (k), collisional 
(c) and potential (p) contributions to the overall (0) 7ii as a function of p. The mean relative motion 
is zero. 

hence we did not evaluate it. To save computational time, we also did not evaluate 
the potential contribution to T ~ ~ .  However, since the magnitude of the potential 
contribution to T~~ is small, we found that the sum 7; +7f1 was reasonably close to bii, 
as required by the isotropy of the dispersion. 

As in the case of random arrays with mean relative motion, we found that in order 
to evaluate the potential contribution to the stress with greater accuracy, we need 
to include higher-order multipoles. Interestingly, the magnitude of the potential 
contribution decreased with higher-order multipoles. For example, for an initial 
configuration of 10 bubbles with a random velocity distribution, we found that the 
potential contribution changed by 50 % as the highest-order multipoles retained in 
the solution were increased from dipoles to octupoles. However, in contrast to the 
case of random arrays with mean relative motion, we found that the magnitude of 
the potential contribution decreased with higher-order multipoles. Thus, the actual 
potential contribution to the total dispersed-phase stress is even smaller than is 
indicated in figure 4. 

5. Summary 
We have derived a set of equations to describe the behaviour of gas-liquid 

dispersions for the special case of large Reynolds number and slowly varying fields. 
The emphasis was on deriving expressions for various average quantities in terms of 
dynamic variables accessible through numerical simulations such as those described 
in I. For easy reference, these are listed below. 

Equations for the overall medium : 

Equations for the dispersed phase : 
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where is the average velocity of the mixture, 4 = q- q, (1 -p) U: = &-PUG, 
Cdl and Cd2 are the viscous drag coefficients based, respectively, on the average drag 
force and viscous dissipation per unit volume of the mixture. The impulse is related 
to U, and J( by the added mass coefficient: 

Ii  = m[;C, V, - U,]. (115) 

The added mass and viscous drag coefficients are functions of p and e or ( e / m P ) .  
Similarly, the dispersed-phase tensor is defined via 

7 i j  = m[(V, ~-8v"s,)T,,+5~/2T,,sij], (116) 
where T,, and Ti are functions of p and e .  

Finally, it should be emphasized that the above expressions are correct only to 
the first-order spatial derivatives in p and V,, except for those terms multiplied by 
the viscosity of the liquid. Since we are dealing with large Reynolds number flows, the 
first-order spatial derivatives in those terms have been neglected. When gradients 
are significant, we shall also need to include them in the constitutive relations for T~~ 

etc. and this will introduce new quantities such as the viscosity of the dispersed 
phase. 
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Note added in proof 

When the gradients in average velocity U are non-zero, there will be an additional 
contribution to the rate of change of impulse associated with each bubble. To first 
order in small gradients, the contribution due to this (referred to as the lift force) is 
similar to the viscous and buoyancy forces, and can be expressed in terms of the rate 
of strain tensor and vorticity of the mean flow. Thus, -m[(l + 1/2C,)E,,Vj+ 
1/4CQeijks2,Vk] must be added to the right-hand side of (113). Here, E,,= 
(a,Uj+ajU,)/2, Qt = EijkajUk, and C,  and C, are coefficients accounting for the effect 
of finite /?. It can be shown that C,  = C, for periodic arrays. Whether this simple 
relation between C, and C ,  applies even to random arrays will be investigated in a 
future work. Note that a similar correction will apply to the dispersed phase energy 
equation (114) as well. 




